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Slip, Stress Drop and Ground Motion of Earthquakes: A View
from the Perspective of Fractional Brownian Motion

CHU-CHUAN PETER TSAI1

Abstract—The characteristics of slip and stress drop distributions accompanying earthquakes are
explored from the perspective of fractional Brownian motion (fBm). Slip and stress drop distributions are
assumed to be processes of fBm. The Hurst exponent (H), which reveals the roughness of a random
process of fBm, is first estimated from ten inferred slip maps for six crustal earthquakes occurring in
California. The relationships between the Hurst exponents with respect to static slip (Hu ), stress (Ht ),
static stress drop (HDs ) and slip velocity (Hu; ) are then established following ANDREWS (1980). They are
found to be HDs=Ht=Hu−1=Hu; −0.5. Empirically, Hu is recognized as being about 1 which,
according to the theory of fBm, implies that the static slip distribution of an earthquake is just on the
margin between being and not being self-similar, depending on the individual case. Cases where Hu is less
than 1 (i.e., self-similar) suggest that HDsB0 (i.e., the distribution of static stress drop diverges), which
is, in light of fBm, invalid. One possible explanation for this paradox is that Hu is less than 1 in crustal
earthquake phenomena only over a certain specific bandwidth of wavenumbers, or it could be that the
relation HDs=Hu−1 is not valid, which implies that static stress drop in the wavenumber domain is not
the product of stiffness and slip as described in ANDREWS (1980). It could be that some different physics
apply over this particular bandwidth. In such cases, multi-fractals may be a better way to explore the
characteristics of the Hurst exponents of slip. In general, static stress drop and stress distributions are
more likely to be self-similar than static slip distribution. Hu$1 and HDs$0 are good first approxima-
tions for the slip and stress drop distributions. The spectrum of ground motion displacement falls off as
v−(HDs+2) with HDs$0, consistent with an v−2 model of the earthquake source.

Key words: Slip distribution, stress drop, strong ground motion, Hurst exponent, fractional
Brownian motion, fractal dimension.

Introduction

Many patterns of nature are so irregular and fragmented that standard Eu-
clidean geometry cannot delineate them. Nature exhibits not simply a higher degree
but also an altogether different level of complexity. Those forms that Euclid sets
aside as being ‘‘formless’’ were identified to be a family of shapes that MANDEL-

BROT (1982) called fractals. An ordinary cauliflower represents an excellent example
of a formless shape that can be suitably described by fractals: ‘‘The cauliflower
head contains branches or parts, which when removed and compared with the
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whole are very much the same, only smaller’’ (PEITGEN et al., 1992). The character
that the shapes of cauliflower, or the like, tend to be scaling, is referred to as
self-similarity, in a rough sense. This implies that the degree of irregularity and
fragmentation is identical on all scales. The trace of one-dimensional Brownian
motion is one of the self-similar fractals, which is one special case of a generalized
random function introduced by Mandelbrot who named it fractional Brownian
motion (MANDELBROT and VAN NESS, 1968; MANDELBROT, 1982). Earthquakes
are one such type of highly irregular phenomena in nature. For several decades
now, the concept of fractals has been applied to earthquake phenomena, first
implicitly and later explicitly, by researchers in the seismological community.

‘‘Similarity’’ was first introduced by TSUBOI (1956) to relate earthquakes of
different sizes by a one-parameter model. Ever since, the assumption of self-similar-
ity has been widely applied to seismic sources (e.g., AKI, 1967, 1972; HANKS, 1979;
ANDREWS, 1980, 1981; FRANKEL, 1991; HERRERO and BERNARD, 1994; ZENG et
al., 1994). Inspired by MANDELBROT (1977), ANDREWS (1980, 1981) applied the
concept of ‘‘self-similar irregularity’’ to earthquake phenomena and suggested that
‘‘fractals can also describe the occurrence and mechanics of earthquakes’’.
FRANKEL’s (1991) source model assumes a self-similar distribution of subevents
and suggests that the v−2 spectral falloff can be attributed to scale-invariant
strength along fault zones, corresponding to constant stress drop scaling. Following
Frankel’s self-similar model, ZENG et al. (1994) proposed a composite source model
for the synthesis of realistic strong ground motions. HERRERO and BERNARD

(1994), assuming the spectral amplitude of slip is independent of the size of the
seismic source, proposed a k-square model for the slip spectrum of the ruptured
fault, which also results in the v−2 model for the radiated body waves.

It seems that fractals play fruitful roles in illustrating earthquake phenomena.
However, the adequacy of doing that has never been tested before. Whether or not
there exists a universal scaling (or self-similar) ‘‘rule’’ governing earthquake phenom-
ena is of interest to the seismological and earthquake engineering communities.
Recently, inferred slip maps have become available for some events, namely, the 1979
Imperial Valley earthquake (HARTZELL and HEATON, 1983), the 1984 Morgan Hill
earthquake (HARTZELL and HEATON, 1986; BEROZA and SPUDICH, 1988), the 1987
Whittier Narrows earthquake (ZENG et al., 1993), the 1989 Loma Prieta earthquake
(BEROZA, 1991; WALD et al., 1991), the 1992 Landers earthquake (WALD and
HEATON, 1994a; COHEE and BEROZA, 1994), and the 1994 Northridge earthquake
(WALD and HEATON, 1994b; WALD et al., 1996; ZENG and ANDERSON, 1996). It
is felt that it is of great benefit to reveal the slip characteristics of these events and
to justify the application of the concept of fractals to earthquake phenomena.

In this paper, the author takes a fractional Brownian motion (fBm) perspective
to explore the characteristcs of the slip and stress drop distributions of an
earthquake. From the viewpoint of fBm, a parameter describing the ‘‘roughness’’ of
the slip distribution is estimated from the inferred slip maps, in which asperities are
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clearly observed. It has been demonstrated that this parameter, referred to here as
the ‘‘Hurst exponent’’ (HURST et al., 1965; MANDELBROT, 1977), plays a crucial
role in earthquake phenomena. The Hurst exponents with respect to slip (Hu ) are
first estimated from ten slip models. The results reveal that Hu is in the neighbor-
hood of 1, which means that the slip distribution in the space domain may be either
fractal (HuB1) or differentiable (Hu]1), depending on the individual events.
Assuming that the stress in the seismogenic zone of the crust is a random process
described by fBm, the stress drop can similarly be described by fBm, which implies
that Ht (where t represents stress) is equal to HDs (where Ds represents stress drop).
Based on ANDREWS (1980), the relation HDs=Hu−1 is reached. This suggests that
HDs is, in general, close to 0. However, from the theory of fBm, it cannot be equal
to or less than 0. An interesting issue thus raised in this study is that in these cases
where there is a possibility that HuB1, the unassailableness of the relation
HDs=Hu−1 is put into question. In light of this, it is suggested that by estimating
Hu in different bandwidths of wavenumber, multi-fractals may be an alternative
solution to this issue. As a rule, Hu$1 and HDs$0 are first good approximations
for slip and stress drop distributions, which indicates that a falloff of v−2 is a good
approximation for ground motion simulations.

Fractional Brownian Motion

In one dimension, a random process X of a real variable t (time or distance) is
called fractional Brownian motion (MANDELBROT and VAN NESS, 1968; MANDEL-

BROT, 1982) if the increment X(t2)−X(t1) has a Gaussian distribution with mean
zero and variance:

Var(X(t2)−X(t1))= �t2− t1�2Hs2
x 1−x 0

, (1)

where H is referred to as the ‘‘Hurst exponent’’ with values between 0 and 1
(FEDER, 1988, pp. 170–183; SAUPE, 1988; VOSS, 1988; PEITGEN et al., 1992, p.
415); and s2

x 1−x 0
is the variance of the difference X(1)−X(0) when t2− t1 equals

1 unit of the variable t.
The increments of X are statistically self-affine with H. That is,

X(t0+ t)−X(t0),

and

1
sH (X(t0+st)−X(t0)) (2)

are statistically indistinguishable for any t0 and s\0, scaling differently in the t and
X coordinates. The scaling property of fBm represented above is different from
statistical self-similarity, which repeats its ‘‘shape’’ with the same magnifications in
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both the t and X directions. For the exponent H=0, the variance is independent of
scaling. X still ‘‘looks’’ the same for all s\0. This means X can be expanded or
contracted in the t coordinate by any factor, thus implying that a sample of X with
H=0 must densely fill up the plane on which X is shown. If H=1, the opposite
case prevails. For other values of the exponent, X behaves differently depending on
H, such that:
� H=1

2; X is the ordinary Brownian motion which has independent increments.
� H\1

2; the increments of X have a positive correlation, i.e., if X increases for t0,
it tends to continue to increase for t0+ t (t\0).

� HB1
2; the opposite of the above holds, and X appears more erratic.

The Hurst exponent thus indicates the ‘‘roughness’’ of the curve depicted by X
plotted against t. It is also related to the fractal dimension, Df (MANDELBROT,
1977), by the equation:

Df=n+1−H, (3)

where n denotes the number of dimensions. In the one-dimensional case, Df=2−
H. The one-dimensional fBm of X is ‘‘fractal’’ when its fractal dimension is in the
range of 1BDfB2.

For a sample of fBm in the multi-dimensional domain, its power spectrum is
related to the Hurst exponent as follows (SAUPE, 1988):

S(k1, . . . , kn )8
1

(
k2
1+ · · ·+k2

n )2H+n
. (4)

In the one-dimensional case, the power spectrum falls off as k−(2H+1). Since the
spectral amplitude is proportional to the square root of the power spectrum, the
one-dimensional spectral amplitude of fBm falls off as k−(H+0.5), or as k−(2.5−Df ),
which is consistent with that mentioned in SCHOLZ and AVILES (1986), if it is in
terms of the fractal dimension.

The Hurst Exponent with Respect to Slip

Nature reveals fractal characteristics for many phenomena on earth (e.g.,
MANDELBROT, 1977, 1982; PEITGEN and RICHTER, 1986). If the fractal character
is embedded in the fault slip distribution, the roughness of the slip curve can be
represented by the Hurst exponent H, and the curve itself can be simulated by fBm.
This raises the question as to the degree of roughness of the fault slip, or in other
words, the value of H. The answer may lie in the inferred slip maps of earthquake
events.

Let u(x, y) denote the two-dimensional slip distribution of the fault. The slip
profile u(x) (at some ‘‘depth’’ y) delineated by one-dimensional fBm can be
transformed from the space domain into the wavenumber domain. For the
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wavenumber k greater than the corner frequency k0x (which is equal to the inverse
of the rupture length along the x direction), according to Equation (4), its power
spectrum falls off as k−(2H+1) or by Equation (3) with n=1, as k−(5−2Df ). If H=1
(or equivalently, Df=1), the power spectrum falls off as k−3, with u(x) being
nonfractal and differentiable. In contrast, if the power spectrum falls off flatter than
k−3 with 0BHB1, the slip profile u(x) is not differentiable, but it is fractal with
1BDfB2.

To investigate the characteristics of the Hurst exponent H for the inferred slip
maps, the assumption is made here that the falloff of the spectral amplitude of slip
in two dimension (n=2) is as follows:

�U(kx, ky )�= AMP

1+
�'k2

x+k2
y

k0xk0y

�H+1
, (5)

where U(kx, ky ) is the two-dimensional Fourier transform of slip u(x, y); k0x and
k0y are the corner frequencies along the x and y coordinates, respectively; and AMP
is equal to �U(0, 0)�. For wavenumbers kx^k0x and ky^k0y :

�U(kx, ky )�$ AMP�'k2
x+k2

y

k0xk0y

�H+1
. (6)

The rearrangement of Equation (6) yields the Hurst exponent:

H(kx, ky )=
log(AMP)− log�U(kx, ky )�

log
�'k2

x+k2
y

k0xk0y

� −1, (7)

which, except for both kx and ky=0, has a value corresponding to each pair of
wavenumbers (kx, ky ). These values of H(kx, ky ) are calculated from the ten slip
models mentioned previously and listed in Table 1. Figure 1 shows the histograms
and frequency distributions of the Hurst exponents H(kx, ky ) for wavenumbers
kx^k0x and ky^k0y. The mean values and standard deviations of H are also
shown with each histogram.

TSAI (1992) evaluated the Hurst exponents applying Equation (7) and slip maps
inferred from three events: the Imperial Valley, the Morgan Hill and the Loma
Prieta earthquakes. Although the values of the Hurst exponents for these three
earthquakes were generally close to 1.0, in this study, lower values of 0.40BHB
0.67 (see the results from Equation (7) in Table 1) are obtained with the availability
of more slip maps from the Whittier Narrows, the Landers (except for the model by
COHEE and BEROZA, 1994) and the Northridge earthquakes.

To avoid multiple estimates of H resulting from Equation (7), an alternative
computation is implemented in this study in order to obtain a unique value of
H for each slip model. Based on the linear regression of log�U(kx, ky )� on
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log(
k2
x+k2

y )/k0xk0y) from Equation (6), the least-squares value of H can be
obtained as follows:

H=
%
N

i:ki\k 0x

%
M

j:kj\k 0y

Aij log�U(ki, kj )�− (log AMP) %
N

i:ki\k 0x

%
M

j:kj\k 0y

Aij

%
N

i:ki\k 0x

%
M

j:kj\k 0y

A2
ij

−1,

Aij=−
1
2

log
�k2

i +k2
j

k0xk0y

�
, (8)

where N and M are integers such that kN and kM are the Nyquist wavenumbers
along the x and y coordinates of the fault, respectively.

In addition to the mean values of H estimated from Equation (7), Table 1 also
lists the fitted values of H estimated from Equation (8). The Hurst exponents of
these two categories for each slip model are very close. Figure 2 exhibits the
scattergram for the two categories of the Hurst exponents, together with the
correlation coefficient which is equal to 0.995. The high correlation and linear
relationship between these two types of estimates of H may result because the two
methods are closely related mathematically, or because the Hurst exponents ob-
tained by either method are very stable. To be further assured of the characteristics
of the coseismic slip distribution in terms of H, the author performs additional
computations below.

It should be noted that both Equations (7) and (8) represent methods based on
the assumption that AMP, k0x and k0y are known quantities. In a different way,
Equation (6) may be treated as a linear relationship of the form:

y=a+bx (9)

between the variables y= log�U(kx, ky )� and x= log(
(k2
x+k2

y )/k0xk0y) with AMP,
k0x and k0y being unknown. The value b can be determined from standard
regression methods, and H=−b−1. The standard error of the b values from the
regression can also be determined, and hence, the standard deviation of H can be
obtained. Given appropriate ranges of values for k0x and k0y, the optimal value of
b is the one that corresponds to k0x and k0y which give the lowest standard error.

The least-squares values together with the statistical uncertainty in the estimates
of H from Equation (9) are shown in Table 1 and are compared with those of the
previous two methods. To provide some idea as to the quality of the slip data that
are used in this study, the grid points and element sizes are also shown in the Table

Figure 1
Histograms and frequency distributions of the Hurst exponents H(kx, ky ) estimated from Equation (7)
for the ten slip models with wavenumbers kx^k0x and ky^k0y. Mean values and standard deviations

of H are also shown in each histogram.
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Table 1

Hurst exponents with respect to slip calculated from Equations (7), (8) and (9). Hurst exponents calculated
from Equation (8) from the Landers earthquake using WALD and HEATON ’s (1994a) slip model are first
a6eraged prior to the estimation of the gross mean and standard de6iation. Those 6alues in parentheses are

not used in estimating the gross mean and standard de6iation using Equation (9)

Element size
Event Grid points km×km Eq. (7) Eq. (8) Eq. (9)

Imperial Valley 44×11 1.0×1.0 1.07890.182 1.075 1.00190.189
(HARTZELL and HEATON)

Morgan Hill 61×11 0.5×1.0 0.72090.254 0.738 1.43190.135
(BEROZA and SPUDICH)

Morgan Hill 28×13 1.0×1.0 0.92090.261 0.922 1.57890.198
(HARTZELL and HEATON)

Whittier Narrows 25×25 0.5×0.5 0.51990.222 0.533 0.90190.120
(ZENG et al.)

Loma Prieta 81×15 0.5×10 0.99290.227 1.001 1.54290.086
(BEROZA)

Loma Prieta 12×8 3.3×2.5 0.73890.320 0.731 0.60390.426
(WALD et al.) 10×6 0.507 (0.42090.637)

Landers 9×6 3.0×2.5 0.61290.354 0.590 (0.06790.599)
(WALD and HEATON) 12×6 0.570 0.99190.570

Landers 28×6 3.0×3.0 0.92890.348 0.915 0.62490.531
(COHEE and BEROZA)

Northridge 9×10 2.0×2.0 0.59690.255 0.585 (0.01790.412)
(WALD and HEATON)

Northridge 23×23 1.0×1.0 0.41490.225 0.416 0.87690.135
(ZENG and ANDERSON)

Mean 0.752 0.747 1.061
Standard deviation 0.220 0.224 0.372

for each slip model. Some estimated values of H (in parentheses) obtained from
Equation (9) do not seem reasonable, and this author believes they are not reliable.
It should be kept in mind that appropriate ranges of the values for k0x and k0y are
assigned to each slip model. Unexpectedly, the estimates of H from Equation (9) for
slip models that have low quality of resolution are mostly negative except for those
which correspond to the corner frequencies that give the optimal values of H. This
implies that with Equation (9), a limited resolution of the slip model with small grid
points and of large element size may produce unreliable estimates of H. On the
other hand, however, bad (negative) estimates of H are rarely seen from Equation
(7) and never from Equation (8).

The variability of H among the ten slip models may have been caused by
differences in the grid points and element sizes among slip maps, and in the seismic
data and the inversion techniques that have been used by different groups of
researchers. No matter which slip model has a better representation of the coseismic
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Figure 2
Scattergram of two category estimates of the Hurst exponents obtained from Equations (7) and (8),
together with the correlation coefficient, r, which is equal to 0.995. The regression line is obtained by a

least-squares fit to the data.

slip distribution, the mean value of H averaged over various slip models may
provide a rough idea as to the coseismic slip of earthquake events. Both the gross
means and standard deviations of H (Table 1) estimated from Equations (7) and (8)
are similar with both equations and are approximately equal to 0.75 and 0.22,
respectively. In contrast, if the unreliable estimates obtained from Equation (9) are
ignored, the gross mean and standard deviations of H are 1.06 and 0.37, respectively.

It is worth noting that the optimal values of H obtained from Equation (9)
mostly correspond to the corner frequencies which are much lower than those
which are used with Equations (7) and (8). Another significant difference between
the use of Equation (9) and that of Equations (7) and (8) is that the former treats
AMP as an unknown variable, while the latter two treat it as a known quantity.
Standard regression analysis using Equation (9) provides more information about
the statistical uncertainty in the estimates of H. The standard deviation of the
estimated H for each slip model varies from 0.086 to 0.570 (if unreliable estimates
are excluded), depending on the quality of the slip data.

Though it may be asked which estimate of H better represents the characteristics
of all crustal earthquakes, the response could be that it is too early to answer on the
basis of the ten slip models. Although a gross mean of 0.75 from Equations (7) and
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(8) is close to that of 1.06 from Equation (9), the difference in the implications of
the Hurst exponent of slip between HB1 and H\1 is dramatic from the viewpoint
of fBm. (Recall that if H]1, the slip in the space domain is differentiable, whereas
if 0BHB1, the slip is fractal.) If Equation (9) is a better method for the estimation
of H, it can be stated with little risk that the value of H is around 1 and varies with
an uncertainty of 90.37 from event to event for different earthquakes, depending
both on the characteristic of the crust and on the type of earthquake mechanism.
To more clearly ascertain the statistical nature of the slip distribution, inferred slip
maps with the highest possible quality resolution from more events are required.

The Hurst Exponents with Respect to Stress and Stress Drop

The relationship between the stress function, t(x), and the stress drop function,
Ds(x), can now be considered in terms of fBm in one dimension. Let t0 and t1

denote the initial stress before the earthquake and the final stress afterwards,
respectively. The increment of stress drop at the two locations of x1 and x2 can be
expressed as:

Ds(x2)−Ds(x1)= [t0(x2)−t1(x2)]− [t0(x1)−t1(x1)]

= [t0(x2)−t0(x1)]− [t1(x2)−t1(x1)]. (10)

If the stress t(x) is fBm with the Hurst exponent Ht, the increment of t(x) is
Gaussian with mean zero and its variance is:

Var(t(x2)−t(x1))= �x2−x1�2Hts2
t 1−t 0

. (11)

Following the above assumption, the stress field should be fBm no matter if it is
before or after the earthquake. This being the case, it is logical to deduce that the
increment of stress drop, Ds(x2)−Ds(x1), is also a random process which can be
expressed in terms of fBm and is Gaussian with mean zero and with variance:

Var(Ds(x2)−Ds(x1))= �x2−x1�2HDss2
Ds 1−Ds 0

, (12)

where HDs is the Hurst exponent with respect to stress drop.
On the other hand, from the basic theory of probability (SPIEGEL, 1975), the

variance in Equation (12) can also be described as follows:

Var(Ds(x2)−Ds(x1))=Var(t0(x2)−t0(x1))+Var(t1(x2)−t1(x1))

−2 Cov(t0(x2)−t0(x1), t1(x2)−t2(x1)). (13)

Following ANDREWS’ (1981) argument that fluctuations over one thousand bars of
stress may occur on the shorter wavelength scale, the last co6ariance term in
Equation (13) can be ignored because of the low correlation between the increment
of stress before and after the earthquake due to the high fluctuations of stress
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involved. (A covariance equal to zero is reasonable for the wavelength of interest
here.)

Substituting Equations (11) and (12) into (13) yields:

�x2−x1�2HDss2
Ds 1−Ds 0

= �x2−x1�2Ht 0s2
t 0

1−t 0
0
+ �x2−x1�2Ht 1s2

t 1
1−t 1

0
, (14)

where Ht 0 and Ht 1 denote the Hurst exponents with respect to stress before and
after the earthquake, respectively. By analogy with Equation (13), it is reasonable
to determine that s2

Ds 1−Ds 0
=s2

t 0
1−t 0

0
+s2

t 1
1−t 1

0
. Thus, the expression on the left-

hand side of Equation (14) becomes:

�x2−x1�2HDss2
Ds 1−Ds 0

= �x2−x1�2HDss2
t 0

1−t 0
0
+ �x2−x1�2HDss2

t 1
1−t 1

0
. (15)

It is apparent from the comparison of Equations (14) and (15) that HDs=
Ht 0=Ht 1. Consequently, the Hurst exponent with respect to stress drop is equiva-
lent to that with respect to stress for both stress fields before and after the
earthquake. That is:

HDs=Ht. (16)

This supports ANDREWS’ (1980) assumption that the change in static shear traction
in a single earthquake has the same spectrum as that of the total static shear
traction on a fault that is strictly self-similar even though he later argued (AN-

DREWS, 1981) that this need not be true.
Equation (16) has yet a futher implication. Although the stress drop process is

the difference in stress before and after the earthquake (i.e., Ds=t0−t1), if the
stress function is fBm, the stress drop function is also fBm with the same Hurst
exponent. Furthermore, both the stress and stress drop function have the same
spectral amplitude which falls off as k−(HDs+0.5) in one dimension.

Implications for Slip, Slip Velocity, Stress Drop and Ground Motion

There is little doubt that the Hurst exponent plays an important role in
revealing the characteristics of the slip and stress drop distributions on the fault
surface. Not only does it exhibit the degree of roughness of a random process in the
space domain, but it also dictates the steepness of spectrum falloff in the wavenum-
ber domain. As discussed in the previous section, based on the assumption that
stress is a random process described by fBm, it can be concluded that stress drop
can also be described by fBm. Obviously, it is of great benefit therefore to explore
the characteristics of the Hurst exponent, HDs.

Let Hu denote the Hurst exponent with respect to slip. According to ANDREWS

(1980, 1981), the static stress drop in the wavenumber domain is a multiplication of
slip and stiffness. In his formulation, stiffness is proportional to the wavenumber k.
It should be recalled that the one-dimensional spectral amplitude of the static slip
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falls off as k−(Hu+0.5) for wavenumbers higher than the corner frequency. As a
result, the one-dimensional spectral amplitude of the static stress drop falls off as
k−(Hu−0.5) in terms of the Hurst exponent of slip. On the other hand, however, in
conjunction with the nature of fBm, the spectrum amplitude of the stress drop
should fall as k−(HDs+0.5) if the Hurst exponent is described in terms of the stress
drop. Consequently, it is easy to understand that:

HDs=Hu−1. (17)

ANDREWS (1981) showed that Hu is related to the Hurst exponent with respect
to the slip velocity, Hu; , as follows:

Hu; =Hu−
1
2

, (18)

and that the ground displacement transform at a point near the fault is propor-
tional to:

�D(v)�8v−(Hu; +1.5). (19)

For Hu; =1/2 (i.e, Hu=1), ground motion has an v-square spectrum, which means
that the ground acceleration is white noise with a flat spectral amplitude within
certain bands between the corner and cutoff frequencies. ANDREWS (1981) favors
Hu;$1/2 and he has Ht (following his notation) represent the Hurst exponent with
respect to stress change, which is related to Hu; as follows:

Ht=Hu; −
1
2

. (20)

ANDREWS’ (1981) Ht is essentially equivalent to HDs in this article owing to the fact
that

HDs=Hu−1

=Hu; −
1
2

=Ht. (21)

The empirical observation that Hu$1 (as reported by Equation (9) in Table 1) and
that HDs:0 is implied, is consistent with Andrews’ argument that Ht$0 which
implies Hu;:1/2.

The choice of the Hurst exponent with respect to slip, slip velocity, stress or
stress drop is rather arbitrary. FRANKEL (1991) selected stress on the fault as the
self-similar random function (in other words, choosing the Hurst exponent with
respect to stress, Ht, with t strictly representing stress, not stress drop), and
accordingly he came to the conclusion that the ground displacement transform is
proportional to:

�D(v)�8v−(1.5Ht+2). (22)
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For Ht$0, he also had an v-square model for ground motion. However, except
for Ht=0 and Hu; =1/2 (or HDs=0), both of which imply v-square models, the
spectrum falloffs for both ANDREWS’ (1981) and FRANKEL’s (1991) ground motion
spectra are not the same for Equations (19) and (22). For instance, if Hu; =1 (i.e.,
HDs=1/2), Equation (19) results in v−2.5, whereas for HDs=Ht=1/2, Equation
(22) indicates v−2.75.

Table 2 summarizes the Hurst exponents with respect to various parameters:
slip/stress drop (this article), slip velocity (ANDREWS, 1981) and stress on the fault
(FRANKEL, 1991). These exponents are extended outside the range 0BHB1 and
aligned with the corresponding values: Hu=HDs+1=Hu; +0.5=Ht+1. For each
category of Hurst exponent, the corresponding spectral amplitude falloffs of
interest (in two dimension) as well as the ground displacement transforms are
shown. The results from this study are consistent with ANDREWS’ (1981) however,
except in the case of the v-square model, conflict with FRANKEL’s (1991) for
ground motion. Highlighted within the dashed lines in the table are those with
Hurst exponents corresponding to Hu=1, HDs=Ht=0 and Hu; =0.5.

HERRERO and BERNARD’s (1994) k-square model, which leads to the v-square
model, is consistent with the present model of Hu=1. Their stress drop spectrum,
which has a falloff of k−1 (where k is the radial wavenumber), agrees with the stress
drop distribution with HDs=0 obtained here. Additionally, the relationship of

Table 2

Summary of the Hurst exponents with respect to 6arious parameters and their corresponding spectral
amplitude falloffs (in two dimension), together with the accompanied ground displacement transforms. Also

shown here are the results of ANDREWS (1981) and FRANKEL (1991)

This study ANDREWS (1981) FRANKEL (1991)

Slip (u) Stress drop (Ds) D(v) Slip velocity (u; ) D(v) Stress (t) D(v)
Hu k−(Hu+1) HDs k−(HDs+1) v−(HDs+2) Hu; k−(Hu; +1) v−(Hu; +1.5) Ht k−(Ht+1) v−(1.5Ht+2)

2.0 k−3 1 k−2 v−3 1.5 k−2.5 v−3 1 k−2 v−3.5

1.5 k−2.5 0.5 k−1.5 v−2.5 1 k−2 v−2.5 0.5 k−1.5 v−2.75

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
1 k−2 0 k−1 v−2 0.5 k−1.5 v−2 0 k−1 v−2

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
0.5 k−1.5 −0.5 k−0.5 v−1.5 0 k−1 v−1.5 −0.5 k−0.5 v−1.25

0 k−1 −1 k0 v−1 −0.5 k−0.5 v−1 −1 k0 v−0.5

HX : Hurst exponent with respect to random variable X
u : slip
u; : slip velocity
Ds : stress drop
t : stress
k : wavenumber (
k2

1+k2
3)

D : ground displacement in the frequency domain
v : angular frequency

–
–

–
–
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spectrum decays between the slip and the stress drop obtained by HERRERO and
BERNARD (1994) is consistent with that presented in this article, which leads to
Hu=HDs+1.

JOYNER (1991) adopted a source function (slip) that has a high-frequency falloff
of k−1.5 in the two-dimensional wavenumber space and a slip-velocity function of
the Kostrov type (KOSTROV, 1964) with a high-frequency falloff of v−0.5. The
purpose of this was to provide ground motion with an v-square displacement
spectrum. In this paper, a Fourier spectrum of slip in the two-dimensional space
with a high-frequency falloff of k−2 (see Table 2 with Hu=1) is needed in order to
obtain a similar v-square ground motion displacement spectrum.

Discussion and Conclusions

From the perspective of fBm, the relationship that is reached in the present
study,

HDs=Ht=Hu−1=Hu; −0.5, (23)

is consistent with the work of ANDREWS (1981). If fluctuations over one thousand
bars of stress occur at shorter wavelengths (ANDREWS, 1981), the stress drop (or
stress) becomes so highly erratic that a value of HDs (or Ht ) approaching zero can
be deemed a reasonable postulation. However, it should never be less than or equal
to zero (according to the theory of fBm) because a random process diverges for the
Hurst exponent H50. That is, if HDs50, the stress drop has increasing fluctua-
tions over an area shrinking toward zero, which is physically unrealistic. As such,
it appears reasonable that both HDs and Ht are in the same range of 0 to 0.5, and
preferably, are positive and close to 0.

Equation (23) (or more specifically, Equation (17)) implies that Hu is close to
(but not less than) 1 if HDs is positive and close to 0. In such a case, the slip
distribution should not be a self-similar (or more precisely, self-affine) process; on
the contrary, it should be a process that is more likely differentiable. This is
consistent with the inferred gross mean obtained by Equation (9) although is in
conflict with those obtained by Equations (7) and (8) shown in Table 1. On the
basis of the above inference, it can be stated that the author prefers the results of
Equation (9) to those of Equations (7) and (8).

It seems that regardless of which method is used, the results shown in Table 1
depend upon slip distribution models. Although such a dependency is somewhat
inevitable, possible reasons may be attributed to the error associated with each
model and to the smoothing constraint included in the inversion implemented by
various researchers. The total errors in the slip model contain contributions from
both the inversion method and data errors. Some limits are posed in this study by
the wavenumber bandwidth of the slip models. The bandwidth is, in general,
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limited at the high end by the Nyquist wavenumber associated with the element size
of the grid as displayed in Table 1, compounded by the smoothing constraints. At
the low end, the bandwidth is limited by lowcut filtering of the ground motion records
and, for the purposes of this study, the necessity to use data with wavenumbers
kx^k0x and ky^k0y. For instance, the bandwidth along the strike direction that is
used to estimate Hu is between 0.0333 (the corner wavenumber, in 1/km) and 1 (the
Nyquist wavenumber) using Beroza and Spudich’s slip model for the Morgan Hill
earthquake with grid points 61 and element size 0.5 km. The corner wavenumber is
calculated by 1/((61−1)×0.5), but the Nyquist wavenumber by 1/(2×0.5).

It should be noted that any smoothing effects of the inversion tend to make the
resulting Hu values larger than they should be because the smoothing constraint in
the inversion minimizes the slip gradient or the slip curvature across the fault plane.
Figure 3 shows an example of the smoothing effects on the resulting Hu values.
Shown at the top of the figure is the original slip model of the Northridge
earthquake from ZENG and ANDERSON (1996); the Hurst exponent of the slip for
this model is 0.876 (the medium value obtained by Equation (9) as listed in Table
1). If the slip model is interpolated by making the dimension of the element size
one-half of the original size, that is 0.5×0.5 km2 (as shown in the middle of the
figure), the slip distribution is smoothed by the interpolation and the new Hu value
is 2.767. If the slip model is further smoothed by making the element dimension
one-fourth of the original size, that is 0.25×0.25 km2 (as shown at the bottom of
the figure), the Hu value is 3.202. Analogously, for the slip model of the Landers
earthquake from COHEE and BEROZA (1994), the Hu value changes from 0.624 to
2.262 and 2.477. Also, for the slip model of the Morgan Hill earthquake from
BEROZA and SPUDICH (1988), the Hu value changes from 1.431 to 1.688 and 1.772.
These examples demonstate that the smoothing effect on the resulting Hu values is
tremendous, especially for those slip models whose Hurst exponents were originally
estimated at less than 1.

If the smoothing effects are avoidable in the inversion, estimates of Hu may tend
to be smaller than those presented in Table 1. Therefore, it is possible that the gross
mean of Hu in Table 1 is less than 1, even if this is based on the method of
Equation (9). A reasonable deduction would be that Hu is less than 1 in crustal
earthquake phenomena only over some specific (or limited) bandwidth. Further-
more, since HDs should never be less than zero, some different physics may apply
over this particular bandwidth such that the relation of Equation (17) may no
longer be valid. The stress drop in the wavenumber domain may not be the
multiplication of stiffness and slip as described in ANDREWS (1980). There remain
aspects of the faulting process that cannot be described adequately by the relation-
ship between ‘‘static slip’’ and ‘‘static stress drop’’. If this is the case, Equation (17)
may not be valid to describe the ‘‘dynamic’’ phenomenon of the faulting process for
a certain bandwidth of wavenumber. In such cases, multi-fractals should be used to
explore the characteristics of the Hurst exponents of slip as long as the quality of
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the slip data allows this to be done. That is, there should be more than one value
of Hu in the slip distribution for different bandwidths of wavenumber. The range of
the specific bandwidth may vary from one event to another, depending on the
crustal environment that is involved.

Whether Equation (17) is unassailable or not, it can be stated at present that for
the static description of faulting, Hu$1 and HDs$0 appear to be good first
approximations for slip and stress drop distributions. Thus, the spectrum of ground
displacement that falls off as v−(HDs+2) with HDs close to 0, implying a falloff of
about v−2 (but not flatter than v−2), is a good approximation for the purposes of
ground motion simulations, and this is most consistent with strong-motion observa-
tions.

Acknowledgments

The author benefited from discussions with D. J. Andrews. He would also like
to thank Gregory Beroza, B. P. Cohee, David Wald and Y. Zeng for making the
data of the inferred slip models available to him. The author is equally grateful to
B. P. Cohee and W. B. Joyner for their helpful comments on the manuscript. The
research in this article was supported in part by the National Science Council (NSC
85–2111–M–001–014) and the Institute of Earth Sciences, Academia Sinica,
Republic of China.

REFERENCES

AKI, K. (1967), Scaling Law of Seismic Spectrum, J. Geophys. Res. 72, 1217–1231.
AKI, K. (1972), Scaling Law of Earthquake Source Time-function, Geophys. J. R. Astr. Soc. 31, 3–25.
ANDREWS, D. J. (1980), A Stochastic Fault Model, 1. Static Case, J. Geophys. Res. 85, 3867–3877.
ANDREWS, D. J. (1981), A Stochastic Fault Model, 2. Time-dependent Case, J. Geophys. Res. 86,

10821–18034.
BEROZA, G. C., and SPUDICH, P. S. (1988), Linearized In6ersion for Fault Rupture Beha6ior: Application

to the 1984 Morgan Hill, California, Earthquake, J. Geophys. Res. 93, 6275–6296.
BEROZA, G. C. (1991), Near-source Modeling of the Loma Prieta Earthquake: E6idence for Heterogeneous

and Implication for Earthquake Hazard, Bull. Seismol. Soc. Am. 81, 1603–1621.
COHEE, B. P., and BEROZA, G. C. (1994), Slip Distribution of the 1992 Landers Earthquake and its

Implications for Earthquake Source Mechanics, Bull. Seismol. Soc. Am. 84, 692–712.
FEDER, J., Fractals (Plenum Press, New York 1988).

Figure 3
Illustration of the smoothing effects on the Hu values. The original value of Hu for the Northridge
earthquake (ZENG and ANDERSON’s slip model) is 0.876 (top). When the slip model is interpolated with
the element size of the grids reduced to one-half of the original, Hu is changed to 2.767 (middle). When
the element size of the grids is reduced to one-fourth of the original, the new value of Hu is 3.202

(bottom).



C.-C. P. Tsai706 Pure appl. geophys.,

FRANKEL, A. (1991), High-frequency Spectral Falloff of Earthquakes, Fractal Dimension of Complex
Rupture, b 6alue, and the Scaling of Strength on Faults, J. Geophys. Res. 96, 6291–6302.

HANKS, T. C. (1979), b-6alues and Seismic Source Models: Implications for Tectonic Stress Variations
along Acti6e Crustal Fault Zones and the Estimation for High-frequency Strong Ground Motion, J.
Geophys. Res. 84, 2235–2242.

HARTZELL, S. H., and HEATON, T. H. (1983), In6ersion of Strong Ground Motion and Teleseismic
Wa6eform Data for the Fault Rupture History of the 1979 Imperial Valley, California, Earthquake, Bull.
Seismol. Soc. Am. 73, 1553–1583.

HARTZELL, S. H., and HEATON, T. H. (1986), Rupture History of the 1984 Morgan Hill, California,
Earthquake from the In6ersion of Strong Motion Records, Bull. Seismol. Soc. Am. 76, 649–674.

HERRERO, A., and BERNARD, P. (1994), A Kinematic Self-similar Rupture Process for Earthquakes, Bull.
Seismol. Soc. Am. 84, 1216–1228.

HURST, H. E., BLACK, R. P., and SIMAIKA, Y. M., Long-term Storage: An Experimental Study
(Constable, London 1965).

JOYNER, W. B. (1991), Directi6ity for Nonuniform Ruptures, Bull. Seismol. Soc. Am. 81, 1391–1395.
KOSTROV, B. V. (1964), Selfsimilar Problems of Propagation of Shear Cracks, J. of Applied Math. and

Mech. PMM 28, 1077–1087.
MANDELBROT, B. B., and VAN NESS, J. W. (1968), Fractional Brownian Motions, Fractional Noises and

Applications, SIAM Review 10, 422–437.
MANDELBROT, B. B., Fractals: Form, Change, and Dimension (W. H. Freeman, San Francisco 1977).
MANDELBROT, B. B., The Fractal Geometry of Nature (W. H. Freeman, New York 1982).
PEITGEN, H.-O., and RICHTER, P. H., The Beauty of Fractals (Springer-Verlag, Berlin 1986).
PEITGEN, H.-O., JU8 RGENS, H., and SAUPE, D., Fractals for the Classroom, Part One—Introduction to

Fractals and Chaos (Springer-Verlag, New York 1992).
SAUPE, D., Algorithms for random fractals. In The Science of Fractal Images (eds. Peitgen, H.-O. and

Saupe, D.) (Springer-Verlag, New York 1988) pp. 71–136.
SCHOLZ, C. H., and AVILES, C. A. (1986), The fractal geometry of faults and faulting. In Earthquake

Source Mechanics (eds. Das, S., Boatwright, J., and Scholz, C. H.), Maurice Ewing Series 6, American
Geophysical Union 37, pp. 147–155.

SPIEGEL, M. R., Theory and Problems of Probability and Statistics (McGraw-Hill, New York 1975).
TSAI, C.-C. P. (1992), Engineering Implications of Asperity-induced Ground Motion, Ph.D. Dissertation,

Department of Civil Engineering, Stanford University, Stanford, California, U.S.A., 245 pp.
TSUBOI, C. (1956), Earthquake Energy, Earthquake Volume, Aftershock Area, and Strength of the Earth ’s

Crust, J. Phys. Earth 4, 63–66.
VOSS, R. F., Fractals in nature: From characterization to simulation. In The Science of Fractal Images

(eds. Peitgen, H.-O. and Saupe, D.) (Springer-Verlag, New York 1988) pp. 21–70.
WALD, D. J., HELMBERGER, D. V., and HEATON, T. H. (1991), Rupture Model of the 1989 Loma Prieta

Earthquake from the In6ersion of Strong Motion and Broadband Teleseismic Data, Bull. Seismol. Soc.
Am. 81, 1540–1572.

WALD, D. J., and HEATON, T. H. (1994a), Spatial and Temporal Distribution of Slip for the 1992
Landers, California, Earthquake, Bull. Seismol. Soc. Am. 84, 668–691.

WALD, D. J., and HEATON, T. H. (1994b), A Dislocation Model of the 1994 Northridge, California, Earth-
quake Determined from Strong Ground Motions, U.S. Geological Survey Open-File Report 94–278.

WALD, D. J., HEATON, T. H., and HUDNUT, K. W. (1996), The Slip History of the 1994 Northridge,
California, Earthquake Determined from Strong-Motion, Teleseismic, GPS, and Le6eling Data, Bull.
Seismol. Soc. Am. 86, S49–S70.

ZENG, Y., AKI, K., and TENG, T. L. (1993), Source In6ersion of the 1987 Whittier Narrows Earthquake,
California, Using the Isochorn Method, Bull. Seismol. Soc. Am. 83, 358–377.

ZENG, Y., ANDERSON, J. G., and YU, G. (1994), A Composite Source Model for Computing Realistic
Synthetic Strong Ground Motions, Geophys. Res. Lett. 21, 725–728.

ZENG, Y., and ANDERSON, J. G. (1996), A Composite Source Model of the 1994 Northridge Earthquake
Using Genetic Algorithms, Bull. Seismol. Soc. Am. 86, S71–S83.

(Received March 5, 1996, accepted January 18, 1997)


